کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1713542 | 1519826 | 2015 | 10 صفحه PDF | دانلود رایگان |

The issue of stability and stabilization for a class of nonlinear impulsive hybrid systems based on finite state machine (FSM) with mode-dependent average dwell time (MDADT) is investigated in this paper. The concepts of global asymptotic stability and global exponential stability are extended for the systems, and the multiple Lyapunov functions (MLFs) are constructed to prove the sufficient conditions of global asymptotic stability and global exponential stability, respectively. Furthermore, the method of stabilization is also given for the hybrid systems. The application of MLFs and MDADT leads to a reduction of conservativeness in contrast with classical Lyapunov function. Finally, a numerical example is given to show the feasibility and effectiveness of the proposed approach.
Journal: Nonlinear Analysis: Hybrid Systems - Volume 15, February 2015, Pages 1–10