کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1740646 1521762 2014 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Salinity independent volume fraction prediction in annular and stratified (water–gas–oil) multiphase flows using artificial neural networks
ترجمه فارسی عنوان
پیش بینی مقادیر مستقل شوری در چند قطعه ای حلقوی و طبقه بندی شده (با استفاده از آب آبی گازی) با استفاده از شبکه های عصبی مصنوعی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی مهندسی انرژی و فناوری های برق
چکیده انگلیسی


• An approach to salinity independent volume fraction prediction in water–gas–oil multiphase flows has been proposed.
• The methodology is based on pulse height distributions pattern recognition by an Artificial Neural Network (ANN).
• The dual-mode densitometry using NaI(Tl) real detectors has been modeled using MCNP-X to produce training patterns for the ANN.
• Results show that the proposed approach can make predictions with errors smaller than 3.05% for water, gas and oil.

This work investigates the response of attenuation gamma-rays in volume fraction prediction system for water–gas–oil multiphase flows considering variations in salinity of water. The approach is based on pulse height distributions pattern recognition by artificial neural network. The detection system uses fan beam geometry, comprised of a dual-energy gamma-ray source and two NaI(Tl) detectors in order calculate transmitted and scattered beams. Theoretical models for annular and stratified flow regimes have been developed using MCNP-X code to provide data for the network.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Progress in Nuclear Energy - Volume 76, September 2014, Pages 17–23
نویسندگان
, , , ,