کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1741311 1017383 2011 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Modeling spent TRISO fuel for geological disposal: corrosion and failure under oxidizing conditions in the presence of water
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی مهندسی انرژی و فناوری های برق
پیش نمایش صفحه اول مقاله
Modeling spent TRISO fuel for geological disposal: corrosion and failure under oxidizing conditions in the presence of water
چکیده انگلیسی

High temperature gas reactors (HTGRs) are being considered for near term deployment in the United States under the GNEP program and farther term deployment under the Gen IV reactor design (U.S. DOE Nuclear Energy Research Advisory Committee, 2002). A common factor among current HTGR (prismatic or pebble) designs is the use of TRISO coated particle fuel. TRISO refers to the three types of coating layers (pyrolytic carbon, porous carbon, and silicon carbide) around the fuel kernel, which is both protected and contained by the layers. While there have been a number of reactors operated with coated particle fuel, and extensive amount of research has gone into designing new HTGRs, little work has been done on modeling and analysing the degradation rates of spent TRISO fuel for permanent geological disposal. An integral part of developing a spent fuel degradation modeling was to analyze the waste form without taking any consideration for engineering barriers. A basic model was developed to simulate the time to failure of spent TRISO fuel in a repository environment. Preliminary verification of the model was performed with comparison to output from a proprietary model called GARGOYLE that was also used to model degradation rates of TRISO fuel. A sensitivity study was performed to determine which fuel and repository parameters had the most significant effect on the predicted time to fuel particle failure. Results of the analysis indicate corrosion rates and thicknesses of the outer pyrolytic carbon and silicon carbide layers, along with the time dependent temperature of the spent fuel in the repository environment, have a significant effect on the time to particle failure. The thicknesses of the kernel, buffer, and IPyC layers along with the strength of the SiC layer and the pressure in the TRISO particle did not significantly alter the results from the model. It can be concluded that a better understanding of the corrosion rates of the OPyC and SiC layers, along with increasing the quality control of the OPyC and SiC layer thicknesses, can significantly reduce uncertainty in estimates of the time to failure of spent TRISO fuel in a repository environment.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Progress in Nuclear Energy - Volume 53, Issue 3, April 2011, Pages 278–284
نویسندگان
, ,