کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1741623 1521787 2008 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Nuclear fission power for 21st century needs: Enabling technologies for large-scale, low-risk, affordable nuclear electricity
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی مهندسی انرژی و فناوری های برق
پیش نمایش صفحه اول مقاله
Nuclear fission power for 21st century needs: Enabling technologies for large-scale, low-risk, affordable nuclear electricity
چکیده انگلیسی

We examine the principal concerns regarding provision of a large fraction of human energy needs with nuclear fission reactor-derived electricity, and offer robust physics and engineering responses to each of them. We then propose a representative system-level integration of these solutions to the longstanding problems that have confronted nuclear fission-based power. This integration obviates all fuel supply issues, including the entire set of isotopic enrichment ones, while rendering comparably useful as nuclear fuels all of the actinide elements and isotopes. It entirely avoids transport and reprocessing and the full set of ad hoc waste disposal issues, and completely precludes all those involving proliferation/diversion of fissile isotopes into weapons' programs. It offers high-grade heat in pressurized helium gas for thermodynamically efficient, economically appealing, environmentally attractive combined-cycle conversion to electricity while robustly avoiding prospects of internal overheating of any portion of the reactor's core or fuel. It provides highly redundant means of any desired statistical reliability for prevention of core meltdown in LOCA circumstances. It provides zero biospheric hazard in event of either natural or man-made catastrophe. It requires – indeed, admits of – no operator control actions, other than initial start-up and final shutdown commands, so that operator errors are entirely precluded; during the half-century of potentially full-power operational life in between these two commands, it thermostatically regulates in an entirely automatic manner its own nuclear power generation to match the heat removed from its core in a time-varying fashion. The thorium-burning variant of this new class of reactors involves no long-lived actinide isotopes, thereby obviating a present-day keystone issue of long-term reactor waste storage and disposal. Each of these novel features is technologically separable, so that these new reactor design concepts may be applied piecewise to enhance prospects of nuclear reactor-centered power generation in many different utilization circumstances. However, synergisms arising from their full integration seem likely to be compellingly attractive in most situations, for a constellation of economic and safety reasons. We therefore project a bright future for cheap electricity safely obtained in >10 TWe quantities from nuclear power reactors of this new type, moreover over multi-century time frames. We observe that pertinent aspects of neutron physics and modern technology together offer a far richer spectrum of possibilities for nuclear power reactors than has been significantly explored through the present; the present architecture is merely exemplary.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Progress in Nuclear Energy - Volume 50, Issues 2–6, March–August 2008, Pages 82–91
نویسندگان
, , , , ,