کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1758828 1019250 2014 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Window-modulated compounding Nakagami imaging for ultrasound tissue characterization
ترجمه فارسی عنوان
تصویربرداری ناکاگامی با استفاده از مدولاسیون پنجره برای تعیین مشخصات بافت سونوگرافی
کلمات کلیدی
آمار بلااستفاده تصویربرداری ناکاگامی ترکیب شده، توزیع ناکاگامی، تصویر برداری ناکاگامی
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم آکوستیک و فرا صوت
چکیده انگلیسی


• We proposed window-modulated compounding (WMC) Nakagami imaging.
• Simulations and experiments were performed to validate the proposed idea.
• The WMC technique improved the image smoothness of Nakagami imaging.
• The WMC Nakagami image visualizes scatterer properties with enhanced image quality.

Ultrasound Nakagami parametric imaging is a useful tool for tissue characterization. Previous literature has suggested using a square with side lengths corresponding to 3 times the transducer pulse length as the minimum window for constructing the Nakagami image. This criterion does not produce sufficiently smooth images for the Nakagami image to characterize homogeneous tissues. To improve image smoothness, we proposed window-modulated compounding (WMC) Nakagami imaging based on summing and averaging the Nakagami images formed using sliding windows with varying window side lengths from 1 to N times the transducer pulse length in 1 pulse length step. Simulations (the number densities of scatterers: 2–16 scatterers/mm2) and experiments on fully developed speckle phantoms (the scatterer diameters: 20–106 μm) were conducted to suggest an appropriate number of frames N and to evaluate the image smoothness and resolution by analyzing the full width at half maximum (FWHM) of the parameter distribution and the widths of the image autocorrelation function (ACF), respectively. In vivo ultrasound measurements on rat livers without and with cirrhosis were performed to validate the practical performance of the WMC Nakagami image in tissue characterization. The simulation results showed that using a range of N from 7 to 10 as the number of frames for image compounding reduces the estimation error to less than 5%. Based on this criterion, the Nakagami parameter obtained from the WMC Nakagami image increased from 0.45 to 0.95 after increasing the number densities of scatterers from 2 to 16 scatterers/mm2. The FWHM of the parameter distribution (bins = 40) was 13.5 ± 1.4 for the Nakagami image and 9.1 ± 1.43 for the WMC Nakagami image, respectively (p-value < .05). The widths of the ACF for the Nakagami and WMC Nakagami images were 454 ± 5.36 and 458 ± 4.33, respectively (p-value > .05). In the phantom experiments, we also found that the FWHM of the parameter distribution for the WMC Nakagami image was smaller than that of the conventional Nakagami image (p-value < .05), and there was no significant difference of the ACF width between the Nakagami and WMC Nakagami images (p-value > .05). In the animal experiments, the Nakagami parameters obtained from the WMC Nakagami image for normal and cirrhotic rat livers were 0.62 ± 0.08 and 0.92 ± 0.07, respectively (p-value < .05). The results demonstrated that the WMC technique significantly improved the image smoothness of Nakagami imaging without resolution degradation, giving Nakagami model-based imaging the ability to visualize scatterer properties with enhanced image quality.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Ultrasonics - Volume 54, Issue 6, August 2014, Pages 1448–1459
نویسندگان
, , , , ,