کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1759360 1019277 2006 4 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A quadrature demodulation method based on tracking the ultrasound echo frequency
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم آکوستیک و فرا صوت
پیش نمایش صفحه اول مقاله
A quadrature demodulation method based on tracking the ultrasound echo frequency
چکیده انگلیسی

The ultrasound echo attenuation depends on frequency, propagating depth and tissue characteristics. Thus, the attenuation dependent on frequency results in a larger attenuation of high frequencies than lower when the wave propagates through the tissue. As a result, the central frequency of the echo generates the increasing downshift with the increasing of depth. In the traditional I/Q demodulation method, it is assumed that the central frequency of the echo is the same as the transmitting frequency and unchanged all time. The assumption directly causes that the acquired I/Q signals are not perfect baseband ones but biased due to the echo attenuation. In addition, the unreasonable assumption will keep the echo from getting better signal-to-noise ratio. A quadrature demodulation method based on tracking the ultrasound echo frequency is proposed in this paper. The method consists of the traditional I/Q demodulator, the frequency tracking module, the phase compensation module and the dynamic filtering module. The outputs of I/Q demodulator are biased. Autocorrelation technique is utilized in the frequency tracking unit to estimate the frequency bias according to the outputs of I/Q demodulator. The estimated bias feeds to the phase compensation unit which can eliminate the frequency bias by simple trigonometric function transform. The compensated signals feed to the dynamic filter and are further processed. The bandwidth of the dynamic filter decreases with the increasing of the depth, which makes the echo acquire better SNR in different depth. The efficiency of the proposed method is testified by both simulations and experiments.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Ultrasonics - Volume 44, Supplement, 22 December 2006, Pages e47–e50
نویسندگان
, , ,