کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1759583 | 1019285 | 2009 | 4 صفحه PDF | دانلود رایگان |

In a recent publication [E. Filoux, S. Callé, D. Certon, M. Lethiecq, F. Levassort, Modeling of piezoelectric transducers with combined pseudospectral and finite-difference methods, J. Acoust. Soc. Am. 123 (6) (2008) 4165–4173], a new finite-difference/pseudospectral time-domain (FD–PSTD) algorithm was presented and used to model the generation of acoustic waves by a piezoelectric resonator and their propagation in the structure and the surrounding water. In this paper, the model has been extended to simulate the two-dimensional behaviour of a complete single-element transducer, composed of the resonator, a backing and a front matching layer. This further version of the model takes into account the mechanical loss in materials, and enables the calculation of electrical impedance, which is a characteristic of high interest to optimize the performance of ultrasonic transducers. The impedance curves of a PZT [URL: http://www.ferroperm-piezo.com (last viewed 04/2008); B. Jaffe, R.S. Roth, S. Marzullo, Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics, J. Appl. Phys. 25 (1954) 809–810] plate-based high-frequency transducer, with a 50 MHz thickness resonant frequency, were compared to those of a KLM model [R. Krimholtz, D.A. Leedom, G.L. Matthei, New equivalent circuit for elementary piezoelectric transducers, Electron. Lett. 6 (1970) 398–399] in the one-dimensional case. The acoustical properties were also found to be in good agreement with those obtained using the finite element (FE) method of ATILA® software in two-dimensional configuration.
Journal: Ultrasonics - Volume 49, Issue 8, December 2009, Pages 611–614