کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1772247 1020935 2007 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the Numerical Stability of Some Symplectic Integrators
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم نجوم و فیزیک نجومی
پیش نمایش صفحه اول مقاله
On the Numerical Stability of Some Symplectic Integrators
چکیده انگلیسی

In this paper, we analyze the linear stabilities of several symplectic integrators, such as the first-order implicit Euler scheme, the second-order implicit mid-point Euler difference scheme, the first-order explicit Euler scheme, the second-order explicit leapfrog scheme and some of their combinations. For a linear Hamiltonian system, we find the stable regions of each scheme by theoretical analysis and check them by numerical tests. When the Hamiltonian is real symmetric quadratic, a diagonalizing by a similar transformation is suggested so that the theoretical analysis of the linear stability of the numerical method would be simplified. A Hamiltonian may be separated into a main part and a perturbation, or it may be spontaneously separated into kinetic and potential energy parts, but the former separation generally is much more charming because it has a much larger maximum step size for the symplectic being stable, no matter this Hamiltonian is linear or nonlinear.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chinese Astronomy and Astrophysics - Volume 31, Issue 2, April–June 2007, Pages 172-186