کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1783963 1524109 2016 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Local graph regularized coding for salient object detection
ترجمه فارسی عنوان
کدگذاری محلی برای شناسایی شیء برجسته
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک اتمی و مولکولی و اپتیک
چکیده انگلیسی

Subspace segmentation based salient object detection has received increasing interests in recent years. To preserve the locality and similarity of regions, a grouping effect of representation is introduced to segment the salient object and background in subspace. Then a new saliency map is calculated by incorporating this local graph regularizer into coding, which explicitly explores the data self-representation model and thus locate more accurate salient regions. Moreover, a heuristic object-based dictionary from background superpixels is obtained in border set removing the image regions within the potential object regions. Experimental results on four large benchmark databases demonstrate that the proposed method performs favorably against eight recent state-of-the-art methods in terms of three evaluation criterions, with a reduction of MAE by 19.8% than GR and 29.3% than CB in the two SED datasets, respectively. Meanwhile, our method also runs faster than the comparative detection approaches.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Infrared Physics & Technology - Volume 77, July 2016, Pages 124–131
نویسندگان
, , , , ,