کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1784400 | 1524125 | 2013 | 10 صفحه PDF | دانلود رایگان |

• We present a cost function consists of global constraint, NLM term and SKR term.
• The NLM term considers down-sampling and blurring can estimate the HR pixel.
• The SKR term can restrain the noise and make the results more stable.
• The experimental results show the effectiveness of the proposed method.
In many infrared imaging systems, the focal plane array is not sufficient dense to adequately sample the scene with the desired field of view. Therefore, there are not enough high frequency details in the infrared image generally. Super-resolution (SR) technology can be used to increase the resolution of low-resolution (LR) infrared image. In this paper, a novel super-resolution algorithm is proposed based on non-local means (NLM) and steering kernel regression (SKR). Based on that there are a large number of similar patches within an infrared image, NLM method can abstract the non-local similarity information and then the value of high-resolution (HR) pixel can be estimated. SKR method is derived based on the local smoothness of the natural images. In this paper the SKR is used to give the regularization term which can restrict the image noise and protect image edges. The estimated SR image is obtained by minimizing a cost function. In the experiments the proposed algorithm is compared with state-of-the-art algorithms. The comparison results show that the proposed method is robust to the noise and it can restore higher quality image both in quantitative term and visual effect.
Journal: Infrared Physics & Technology - Volume 61, November 2013, Pages 50–59