کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1784416 1524125 2013 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A strategy for multivariate calibration based on modified single-index signal regression: Capturing explicit non-linearity and improving prediction accuracy
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک اتمی و مولکولی و اپتیک
پیش نمایش صفحه اول مقاله
A strategy for multivariate calibration based on modified single-index signal regression: Capturing explicit non-linearity and improving prediction accuracy
چکیده انگلیسی
In this paper, a modified single-index signal regression (mSISR) method is proposed to construct a nonlinear and practical model with high-accuracy. The mSISR method defines the optimal penalty tuning parameter in P-spline signal regression (PSR) as initial tuning parameter and chooses the number of cycles based on minimizing root mean squared error of cross-validation (RMSECV). mSISR is superior to single-index signal regression (SISR) in terms of accuracy, computation time and convergency. And it can provide the character of the non-linearity between spectra and responses in a more precise manner than SISR. Two spectra data sets from basic research experiments, including plant chlorophyll nondestructive measurement and human blood glucose noninvasive measurement, are employed to illustrate the advantages of mSISR. The results indicate that the mSISR method (i) obtains the smooth and helpful regression coefficient vector, (ii) explicitly exhibits the type and amount of the non-linearity, (iii) can take advantage of nonlinear features of the signals to improve prediction performance and (iv) has distinct adaptability for the complex spectra model by comparing with other calibration methods. It is validated that mSISR is a promising nonlinear modeling strategy for multivariate calibration.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Infrared Physics & Technology - Volume 61, November 2013, Pages 176-183
نویسندگان
, , ,