کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1799889 1524864 2014 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Broadband ferromagnetic resonance system and methods for ultrathin magnetic films
ترجمه فارسی عنوان
سیستم های رزونانس فرومغناطیسی پهن باند و روش های فیلم های مغناطیسی فوق العاده
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک ماده چگال
چکیده انگلیسی


• A broadband FMR system suitable for characterizing ultrathin films is presented.
• FMR signals are compared for waveguide cavity and coplanar waveguide measurements.
• A method for analyzing non-trivial FMR signals is presented and demonstrated.
• FMR with microwave pulse modulation is shown to greatly decrease measurement times.
• Magnetic anisotropy origin in ultrathin Co films in Co/Ru superlattices is explored.

Spintronics requires the development of magnetic thin film structures having a wide range of magnetic properties. Ferromagnetic resonance (FMR) is a well understood experimental technique that has proven to be an invaluable tool to probe the static and dynamic magnetic properties of ultrathin films, multilayer nanostructures, and superlattices. In order to achieve a full characterization of thin film materials, one needs to carry out FMR measurements at a wide range of microwave frequencies. In this paper, we show that one does not have to use a broadband vector network analyzer; similar performance can be achieved by using a broadband microwave signal generator, a coplanar waveguide, and a broadband microwave detector. To obtain a good signal to noise ratio, one needs to employ a modulation technique in order to use lock-in detection; in this paper, we use low frequency external field modulation (105 Hz) and microwave power amplitude pulse modulation (10 kHz). The sensitivity and the performance of this broadband microwave system is demonstrated on two types of samples: molecular beam epitaxy grown single crystal GaAs(001)/Fe/Au and sputter deposited textured Si(111)/Ta/Ru/Co/Ru superlattice structures. The samples were mounted on a coplanar waveguide, allowing one a broadband measurement, ~0.1–50 GHz, of DC field swept FMR signals. The results are compared to traditional field swept, field modulated measurements in microwave cavity resonators. Despite the fact that the FMR signal can be very different from that obtained by standard microwave cavities, we show that the analysis of the FMR signal is fairly simple using an admixture of the in-phase and out-of-phase components of rf susceptibility and that the resulting fitted magnetic parameters are in excellent agreement. Additionally, we demonstrate that microwave power amplitude pulse modulation can be used to greatly speed up data collection times, especially for very weak and broad FMR signals.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Magnetism and Magnetic Materials - Volume 356, April 2014, Pages 12–20
نویسندگان
, , , , ,