کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1801344 | 1024567 | 2009 | 5 صفحه PDF | دانلود رایگان |

The α-Fe2O3/SiO2 nanocomposite containing 45 wt% of hematite was prepared by the sol–gel method followed by heating in air at 200 °C. The so-obtained composite of iron(III) nanoparticles dissolved in glassy silica matrix was investigated by X-ray powder diffraction (XRPD), transmission electron microscopy (TEM), and superconducting quantum interference device (SQUID) magnetometry. XRPD confirms the formation of a single-phase hematite sample, whereas TEM reveals spherical particles in a silica matrix with an average diameter of 10 nm. DC magnetization shows bifurcation of the zero-field-cooled (ZFC) and field-cooled (FC) branches up to the room temperature with a blocking temperature TB=65 K. Isothermal M(H) dependence displays significant hysteretic behaviour below TB, whereas the room temperature data were successfully fitted to a weighted Langevin function. The average particle size obtained from this fit is in agreement with the TEM findings. The small shift of the TB value with the magnetic field strength, narrowing of the hysteresis loop at low applied field, and the frequency dependence of the AC susceptibility data point to the presence of inter-particle interactions. The analysis of the results suggests that the system consists of single-domain nanoparticles with intermediate strength interactions.
Journal: Journal of Magnetism and Magnetic Materials - Volume 321, Issue 1, January 2009, Pages 12–16