کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1803494 | 1024621 | 2008 | 7 صفحه PDF | دانلود رایگان |

Precipitates heavily influence the magnetic properties of electrical steels, either as a key controlled requirement as part of the manufacturing process or as an unwanted harmful residual in the final product. In this current work copper-manganese sulphides precipitates are the primary inhibitor species in the conventional grain-oriented (CGO) steels examined and grain boundary pinning is effective at a mean precipitate size of 30–70 nm. The growth of CuMnS has been studied and the results show that a precipitate size above ∼100 nm allows the onset of secondary recrystallisation in the heating conditions applied.The effect of precipitates on the magnetic properties of both grain-oriented and non-oriented steels in their final product form is then examined. Examples of grain-oriented material still containing large numbers of precipitates clearly show the detrimental effects with increases in total power loss of 40% or more. Loss deterioration by about 20% is also seen in samples of high silicon non-oriented material in which titanium carbo-nitride precipitates have been observed. In this case the precipitates are believed to have formed during cooling after final annealing. Finally a grain-oriented steel with a large number of very small precipitates, which do not seem to have any harmful effect on the magnetic properties, is demonstrated.
Journal: Journal of Magnetism and Magnetic Materials - Volume 320, Issue 20, October 2008, Pages 2423–2429