کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
180454 | 459380 | 2010 | 4 صفحه PDF | دانلود رایگان |

The microstructure of the catalyst layer in proton exchange membrane fuel cells (PEMFCs) greatly influences catalyst (Pt) utilization and cell performance. We demonstrated a functionally graded catalyst layer based on a double-layered carbon nanotube/nanofiber film- (buckypaper) supported Pt composite catalyst to approach an idealized microstructure. The gradient distribution of Pt, electrolyte and porosity along the thickness effectively depresses the transport resistance of proton and gas. A rated power of 0.88 W/cm2 at 0.65 V was achieved at 80 °C with a low Pt loading of 0.11 mg/cm2 resulting in a relatively high Pt utilization of 0.18gPt/kW. The accelerated degradation test of catalyst support showed a good durability of buckypaper support because of the high graphitization degree of carbon nanofibers.
Journal: Electrochemistry Communications - Volume 12, Issue 11, November 2010, Pages 1654–1657