کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
181229 | 459398 | 2008 | 4 صفحه PDF | دانلود رایگان |

In this study, Nb2O5 nanobelts, with a ca. ∼15 nm in thickness, ca. ∼60 nm in width and several tens of mircrometers in length, have first been used as the electrode material for lithium intercalation over the potential window of 3.0–1.2 V (vs. Li+/Li). It delivers an initial intercalation capacity of 250 mA hg−1 at 0.1 Ag−1 current density, corresponding to x = 2.5 for LxNb2O5, and can still keep relative stable and reaches as large as 180 mA hg−1 after 50 cycles. Surprisingly, the electrodes composed of Nb2O5 nanobelts can work smoothly even at high current density of 10 Ag−1, and shows higher specific capacity and excellent cycling stable, as well as sloped feature in voltage profile. Cycling test indicates Nb2O5 nanobelts electrode shows a high reversible charge/discharge capacity, high rate capability with excellent cycling stability.
Journal: Electrochemistry Communications - Volume 10, Issue 7, July 2008, Pages 980–983