کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
181715 | 459409 | 2008 | 4 صفحه PDF | دانلود رایگان |

A strategy of protein entrapment within the bicontinuous gyroidal mesoporous carbon (BGMC) matrix is demonstrated to probe the direct electrochemistry of myoglobin. Large surface area and remarkable electro-catalytic properties of BGMC make it a suitable candidate for high loading of protein molecules and the promotion of heterogeneous electron transfer (ET). In contrast with carbon nanotubes and general carbon mesoporous materials, BGMC is of a relatively isotropic graphited structure and thus can more effectively enhance the heterogeneous ET. Furthermore, a series of BGMCs with different pore sizes (2–7 nm) is designed and synthesized to study the influence of pore size on the immobilization of redox proteins and on the electron transfer.
Journal: Electrochemistry Communications - Volume 10, Issue 12, December 2008, Pages 1864–1867