کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
182281 | 459421 | 2007 | 5 صفحه PDF | دانلود رایگان |

SnS particles with sizes of 5.0–6.5 nm were prepared by a facile method. Resorcinol–formaldehyde sol with addition of the as-prepared SnS nanoparticles was spin-coated on a copper foil to prepare net-like SnS/C composite thin-film electrode for lithium ion batteries after carbonization at 650 °C. The SnS/C nanocomposite thin-film electrode showed preferable first coulombic efficiency and excellent cycling stability. The discharge and charge capacities were respectively 542.3 and 531.3 mAh/g after 40 cycles. The attractive electrochemical performances were mainly ascribed to the ultra fine particle, which showed no evident aggregation in high-resolution TEM image, and the effects of 3-dimensional net-like carbon structure, which uniformly surrounded the SnS nanoparticles to guarantee the contact, acted as a buffer matrix to alleviate the volume expansion of Li–Sn alloy and provided enough paths for electrolyte to reach SnS active material during discharge–charge process.
Journal: Electrochemistry Communications - Volume 9, Issue 1, January 2007, Pages 49–53