کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1840086 1527729 2015 44 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Relaxed singular vectors, Jack symmetric functions and fractional level slˆ(2) models
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات فیزیک ریاضی
پیش نمایش صفحه اول مقاله
Relaxed singular vectors, Jack symmetric functions and fractional level slˆ(2) models
چکیده انگلیسی

The fractional level models are (logarithmic) conformal field theories associated with affine Kac–Moody (super)algebras at certain levels k∈Qk∈Q. They are particularly noteworthy because of several longstanding difficulties that have only recently been resolved. Here, Wakimoto's free field realisation is combined with the theory of Jack symmetric functions to analyse the fractional level slˆ(2) models. The first main results are explicit formulae for the singular vectors of minimal grade in relaxed Wakimoto modules. These are closely related to the minimal grade singular vectors in relaxed (parabolic) Verma modules. Further results include an explicit presentation of Zhu's algebra and an elegant new proof of the classification of simple relaxed highest weight modules over the corresponding vertex operator algebra. These results suggest that generalisations to higher rank fractional level models are now within reach.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nuclear Physics B - Volume 894, May 2015, Pages 621–664
نویسندگان
, ,