کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1840113 1527736 2014 23 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Classical integrable systems and soliton equations related to eleven-vertex R-matrix
ترجمه فارسی عنوان
سیستم های یکپارچه کلاسیک و معادلات حل معادله مربوط به ماتریس یازده رأس است
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات فیزیک ریاضی
چکیده انگلیسی

In our recent paper we suggested a natural construction of the classical relativistic integrable tops in terms of the quantum R-matrices. Here we study the simplest case – the 11-vertex R-matrix and related gl2 rational models. The corresponding top is equivalent to the 2-body Ruijsenaars–Schneider (RS) or the 2-body Calogero–Moser (CM) model depending on its description. We give different descriptions of the integrable tops and use them as building blocks for construction of more complicated integrable systems such as Gaudin models and classical spin chains (periodic and with boundaries). The known relation between the top and CM (or RS) models allows to rewrite the Gaudin models (or the spin chains) in the canonical variables. Then they assume the form of n-particle integrable systems with 2n   constants. We also describe the generalization of the top to 1+11+1 field theories. It allows us to get the Landau–Lifshitz type equation. The latter can be treated as non-trivial deformation of the classical continuous Heisenberg model. In a similar way the deformation of the principal chiral model is described.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nuclear Physics B - Volume 887, October 2014, Pages 400–422
نویسندگان
, , ,