کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1840450 1527725 2015 22 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Topologically stratified energy minimizers in a product Abelian field theory
ترجمه فارسی عنوان
مینیمرهای انرژی طبقه بندی شده از لحاظ توپولوژی در یک نظریه میدان آبلیانی محصول
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات فیزیک ریاضی
چکیده انگلیسی

We study a recently developed product Abelian gauge field theory by Tong and Wong hosting magnetic impurities. We first obtain a necessary and sufficient condition for the existence of a unique solution realizing such impurities in the form of multiple vortices. We next reformulate the theory into an extended model that allows the coexistence of vortices and anti-vortices. The two Abelian gauge fields in the model induce two species of magnetic vortex-lines resulting from NsNs vortices and PsPs anti-vortices (s=1,2s=1,2) realized as the zeros and poles of two complex-valued Higgs fields, respectively. An existence theorem is established for the governing equations over a compact Riemann surface S   which states that a solution with prescribed N1N1, N2N2 vortices and P1,P2P1,P2 anti-vortices of two designated species exists if and only if the inequalities|N1+N2−(P1+P2)|<|S|π,|N1+2N2−(P1+2P2)|<|S|π, hold simultaneously, which give bounds for the ‘differences’ of the vortex and anti-vortex numbers in terms of the total surface area of S. The minimum energy of these solutions is shown to assume the explicit valueE=4π(N1+N2+P1+P2),E=4π(N1+N2+P1+P2), given in terms of several topological invariants, measuring the total tension of the vortex-lines.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nuclear Physics B - Volume 898, September 2015, Pages 605–626
نویسندگان
, ,