کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1840551 | 1527738 | 2014 | 39 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Calculating massive 3-loop graphs for operator matrix elements by the method of hyperlogarithms
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
فیزیک ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We calculate convergent 3-loop Feynman diagrams containing a single massive loop equipped with twist Ï=2 local operator insertions corresponding to spin N. They contribute to the massive operator matrix elements in QCD describing the massive Wilson coefficients for deep-inelastic scattering at large virtualities. Diagrams of this kind can be computed using an extended version of the method of hyperlogarithms, originally being designed for massless Feynman diagrams without operators. The method is applied to Benz- and V-type graphs, belonging to the genuine 3-loop topologies. In case of the V-type graphs with five massive propagators, new types of nested sums and iterated integrals emerge. The sums are given in terms of finite binomially and inverse binomially weighted generalized cyclotomic sums, while the 1-dimensionally iterated integrals are based on a set of â¼30 square-root valued letters. We also derive the asymptotic representations of the nested sums and present the solution for NâC. Integrals with a power-like divergence in N-space âaN,aâR,a>1, for large values of N emerge. They still possess a representation in x-space, which is given in terms of root-valued iterated integrals in the present case. The method of hyperlogarithms is also used to calculate higher moments for crossed box graphs with different operator insertions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nuclear Physics B - Volume 885, August 2014, Pages 409-447
Journal: Nuclear Physics B - Volume 885, August 2014, Pages 409-447
نویسندگان
Jakob Ablinger, Johannes Blümlein, Clemens Raab, Carsten Schneider, Fabian WiÃbrock,