کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1840620 1527746 2013 52 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the refined counting of graphs on surfaces
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات فیزیک ریاضی
پیش نمایش صفحه اول مقاله
On the refined counting of graphs on surfaces
چکیده انگلیسی

Ribbon graphs embedded on a Riemann surface provide a useful way to describe the double-line Feynman diagrams of large N   computations and a variety of other QFT correlator and scattering amplitude calculations, e.g. in MHV rules for scattering amplitudes, as well as in ordinary QED. Their counting is a special case of the counting of bi-partite embedded graphs. We review and extend relevant mathematical literature and present results on the counting of some infinite classes of bi-partite graphs. Permutation groups and representations as well as double cosets and quotients of graphs are useful mathematical tools. The counting results are refined according to data of physical relevance, such as the structure of the vertices, faces and genus of the embedded graph. These counting problems can be expressed in terms of observables in three-dimensional topological field theory with SdSd gauge group which gives them a topological membrane interpretation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nuclear Physics B - Volume 870, Issue 3, 21 May 2013, Pages 530–581
نویسندگان
, , ,