کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1840825 1031249 2013 23 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
From elongated spanning trees to vicious random walks
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات فیزیک ریاضی
پیش نمایش صفحه اول مقاله
From elongated spanning trees to vicious random walks
چکیده انگلیسی

Given a spanning forest on a large square lattice, we consider by combinatorial methods a correlation function of k paths (k is odd) along branches of trees or, equivalently, k loop-erased random walks. Starting and ending points of the paths are grouped such that they form a k-leg watermelon. For large distance r   between groups of starting and ending points, the ratio of the number of watermelon configurations to the total number of spanning trees behaves as r−νlogr with ν=(k2−1)/2ν=(k2−1)/2. Considering the spanning forest stretched along the meridian of this watermelon, we show that the two-dimensional k-leg loop-erased watermelon exponent ν is converting into the scaling exponent for the reunion probability (at a given point) of k  (1+1)(1+1)-dimensional vicious walkers, ν˜=k2/2. At the end, we express the conjectures about the possible relation to integrable systems.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nuclear Physics B - Volume 870, Issue 1, 1 May 2013, Pages 55–77
نویسندگان
, , , ,