کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1841018 | 1031283 | 2011 | 27 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
On threshold resummation of singlet structure and fragmentation functions
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
فیزیک ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The large-x behavior of the physical evolution kernels appearing in the second order evolution equations of the singlet F2 structure function and of the FÏ structure function in Ï-exchange DIS is investigated. The validity of a leading logarithmic threshold resummation, analogous to the one prevailing for the non-singlet physical kernels, is established, allowing to recover the predictions of Soar et al. for the double-logarithmic contributions (lni(1âx), i=4,5,6) to the four loop splitting function Pqg(3)(x) and Pgq(3)(x). Threshold resummation at the next-to-leading logarithmic level is found however to break down in the three loop kernels, except in the “supersymmetric” case CA=CF. Assuming a full threshold resummation does hold in this case also beyond three loop gives some information on the leading and next-to-leading single-logarithmic contributions (lni(1âx), i=2,3) to Pqg(3)(x) and Pgq(3)(x). Similar results are obtained for singlet fragmentation functions in e+eâ annihilation up to two loop, where a large-x Gribov-Lipatov relation in the physical kernels is pointed out. Assuming this relation also holds at three loop, one gets predictions for all large-x logarithmic contributions to the three loop timelike splitting function Pgq(2)T(x), which are related to similar terms in Pqg(2)(x).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nuclear Physics B - Volume 851, Issue 1, 1 October 2011, Pages 30-56
Journal: Nuclear Physics B - Volume 851, Issue 1, 1 October 2011, Pages 30-56
نویسندگان
G. Grunberg,