کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1843055 1031504 2013 36 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Form factors in sinh- and sine-Gordon models, deformed Virasoro algebra, Macdonald polynomials and resonance identities
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات فیزیک ریاضی
پیش نمایش صفحه اول مقاله
Form factors in sinh- and sine-Gordon models, deformed Virasoro algebra, Macdonald polynomials and resonance identities
چکیده انگلیسی

We continue the study of form factors of descendant operators in the sinh- and sine-Gordon models in the framework of the algebraic construction proposed in [1]. We find the algebraic construction to be related to a particular limit of the tensor product of the deformed Virasoro algebra and a suitably chosen Heisenberg algebra. To analyze the space of local operators in the framework of the form factor formalism we introduce screening operators and construct singular and cosingular vectors in the Fock spaces related to the free field realization of the obtained algebra. We show that the singular vectors are expressed in terms of the degenerate Macdonald polynomials with rectangular partitions. We study the matrix elements that contain a singular vector in one chirality and a cosingular vector in the other chirality and find them to lead to the resonance identities already known in the conformal perturbation theory. Besides, we give a new derivation of the equation of motion in the sinh-Gordon theory, and a new representation for conserved currents.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nuclear Physics B - Volume 877, Issue 2, 11 December 2013, Pages 538–573
نویسندگان
, ,