کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1843583 1527747 2012 52 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Self-duality of the compactified Ruijsenaars-Schneider system from quasi-Hamiltonian reduction
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات فیزیک ریاضی
پیش نمایش صفحه اول مقاله
Self-duality of the compactified Ruijsenaars-Schneider system from quasi-Hamiltonian reduction
چکیده انگلیسی
The Delzant theorem of symplectic topology is used to derive the completely integrable compactified Ruijsenaars-Schneider IIIb system from a quasi-Hamiltonian reduction of the internally fused double SU(n)×SU(n). In particular, the reduced spectral functions depending respectively on the first and second SU(n) factor of the double engender two toric moment maps on the IIIb phase space CP(n−1) that play the roles of action-variables and particle-positions. A suitable central extension of the SL(2,Z) mapping class group of the torus with one boundary component is shown to act on the quasi-Hamiltonian double by automorphisms and, upon reduction, the standard generator S of the mapping class group is proved to descend to the Ruijsenaars self-duality symplectomorphism that exchanges the toric moment maps. We give also two new presentations of this duality map: one as the composition of two Delzant symplectomorphisms and the other as the composition of three Dehn twist symplectomorphisms realized by Goldman twist flows. Through the well-known relation between quasi-Hamiltonian manifolds and moduli spaces, our results rigorously establish the validity of the interpretation [going back to Gorsky and Nekrasov] of the IIIb system in terms of flat SU(n) connections on the one-holed torus.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nuclear Physics B - Volume 860, Issue 3, 21 July 2012, Pages 464-515
نویسندگان
, ,