کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1856028 1529850 2015 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A finite-time exponent for random Ehrenfest gas
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک و نجوم (عمومی)
پیش نمایش صفحه اول مقاله
A finite-time exponent for random Ehrenfest gas
چکیده انگلیسی


• We present a finite-time exponent for particles moving in a plane containing polygonal scatterers.
• The exponent found recovers the Lyapunov exponent in the limit of the polygon becoming a circle.
• Our findings unify pseudointegrable and chaotic scattering via a generalized collision rule.
• Stretch and fold:shuffle and cut :: Lyapunov:finite-time exponent :: fluid:granular mixing.

We consider the motion of a system of free particles moving on a plane with regular hard polygonal scatterers arranged in a random manner. Calling this the Ehrenfest gas, which is known to have a zero Lyapunov exponent, we propose a finite-time exponent to characterize its dynamics. As the number of sides of the polygon goes to infinity, when polygon tends to a circle, we recover the usual Lyapunov exponent for the Lorentz gas from the exponent proposed here. To obtain this result, we generalize the reflection law of a beam of rays incident on a polygonal scatterer in a way that the formula for the circular scatterer is recovered in the limit of infinite number of vertices. Thus, chaos emerges from pseudochaos in an appropriate limit.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annals of Physics - Volume 361, October 2015, Pages 82–90
نویسندگان
, , ,