کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1856498 1529861 2014 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Dirac equation in low dimensions: The factorization method
ترجمه فارسی عنوان
معادله دیراک در ابعاد کم: روش فاکتورسازی
کلمات کلیدی
پارادوکس کلاین، ثبات دریا دیراک، مکانیک کوانتومی فوق کلاسیک، تغییر شکل هامیلتونی وابسته به انرژی
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک و نجوم (عمومی)
چکیده انگلیسی


• The low-dimensional Dirac equation in the presence of static potentials is solved.
• The factorization method is generalized for energy-dependent Hamiltonians.
• The shape invariance is generalized for energy-dependent Hamiltonians.
• The stability of the Dirac sea is related to the existence of supersymmetric partner Hamiltonians.

We present a general approach to solve the (1+1)(1+1) and (2+1)(2+1)-dimensional Dirac equations in the presence of static scalar, pseudoscalar and gauge potentials, for the case in which the potentials have the same functional form and thus the factorization method can be applied. We show that the presence of electric potentials in the Dirac equation leads to two Klein–Gordon equations including an energy-dependent potential. We then generalize the factorization method for the case of energy-dependent Hamiltonians. Additionally, the shape invariance is generalized for a specific class of energy-dependent Hamiltonians. We also present a condition for the absence of the Klein paradox (stability of the Dirac sea), showing how Dirac particles in low dimensions can be confined for a wide family of potentials.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annals of Physics - Volume 350, November 2014, Pages 69–83
نویسندگان
, ,