کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1856746 1529904 2011 28 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Topological order in an exactly solvable 3D spin model
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک و نجوم (عمومی)
پیش نمایش صفحه اول مقاله
Topological order in an exactly solvable 3D spin model
چکیده انگلیسی

We study a 3D generalization of the toric code model introduced recently by Chamon. This is an exactly solvable spin model with six-qubit nearest-neighbor interactions on an FCC lattice whose ground space exhibits topological quantum order. The elementary excitations of this model which we call monopoles can be geometrically described as the corners of rectangular-shaped membranes. We prove that the creation of an isolated monopole separated from other monopoles by a distance R requires an operator acting on Ω(R2) qubits. Composite particles that consist of two monopoles (dipoles) and four monopoles (quadrupoles) can be described as end-points of strings. The peculiar feature of the model is that dipole-type strings are rigid, that is, such strings must be aligned with face-diagonals of the lattice. For periodic boundary conditions the ground space can encode 4g qubits where g is the greatest common divisor of the lattice dimensions. We describe a complete set of logical operators acting on the encoded qubits in terms of closed strings and closed membranes.

Research highlights RHtriangle We study exactly solvable spin model with six-qubit nearest neighbor interactions on a 3D face centered cubic lattice.  RHtriangle The ground space of the model exhibits topological quantum order.  RHtriangle Elementary excitations can be geometrically described as the corners of rectangular-shaped membranes.  RHtriangle The ground space can encode 4g qubits where g is the greatest common divisor of the lattice dimensions.  RHtriangle Logical operators acting on the encoded qubits are described in terms of closed strings and closed membranes.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annals of Physics - Volume 326, Issue 4, April 2011, Pages 839–866
نویسندگان
, , ,