کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1857486 1529899 2011 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Ergodic properties of anomalous diffusion processes
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک و نجوم (عمومی)
پیش نمایش صفحه اول مقاله
Ergodic properties of anomalous diffusion processes
چکیده انگلیسی

In this paper we study ergodic properties of some classes of anomalous diffusion processes. Using the recently developed measure of dependence called the Correlation Cascade, we derive a generalization of the classical Khinchin theorem. This result allows us to determine ergodic properties of Lévy-driven stochastic processes. Moreover, we analyze the asymptotic behavior of two different fractional Ornstein–Uhlenbeck processes, both originating from subdiffusive dynamics. We show that only one of them is ergodic.


► We derive a generalization of the classical Khinchin ergodic theorem for the general class of Levy-driven processes.
► We study ergodic properties of stable and tempered stable processes.
► We verify ergodicity and mixing of two fractional Ornstein–Uhlenbeck processes, both originating from subdiffusive dynamics.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annals of Physics - Volume 326, Issue 9, September 2011, Pages 2431–2443
نویسندگان
, ,