کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1859049 1530558 2016 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The dilemma of hyperbolic heat conduction and its settlement by incorporating spatially nonlocal effect at nanoscale
ترجمه فارسی عنوان
معضل هدایت حرارتی هیپربولیک و حل آن با استفاده از اثر فضایی غیر محلی بر روی نانومواد
کلمات کلیدی
هدایت گرمای بیش از حد، اثر مکانی غیر موضعی، شرایط مرزی شار حرارتی
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک و نجوم (عمومی)
چکیده انگلیسی


• The dilemma of hyperbolic heat conduction is summarized.
• Paradox of heat conduction from the cold to the hot.
• Paradox of two temperature at one material point.
• The dilemma is overcome with the aids of spatially nonlocal effect.
• Heat flux boundary condition of non-classical models is discussed.

To model transiently thermal responses of numerous thermal shock issues at nano-scale, Fourier heat conduction law is commonly extended by introducing time rate of heat flux, and comes to hyperbolic heat conduction (HHC). However, solution to HHC under Dirichlet boundary condition depicts abnormal phenomena, e.g. heat conducts from the cold to the hot, and there are two temperatures at one location. In this paper, HHC model is further perfected with the aids of spatially nonlocal effect, and the exceeding temperature as well as the discontinuity at the wave front are avoided. The effect of nonlocal parameter on temperature response is discussed. From the analysis, the importance of size effect for nano-scale heat conduction is emphasized, indicating that spatial and temporal extensions should be simultaneously made to nano-scale heat conduction. Beyond that, it is found that heat flux boundary conditions should be directly given, instead of Neumann boundary condition, which does not make sense any longer for non-classical heat conductive models. And finally, it is observed that accurate solution to such problems may be obtained using Laplace transform method, especially for the time-dependent boundary conditions, e.g. heat flux boundary condition.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physics Letters A - Volume 380, Issues 1–2, 8 January 2016, Pages 255–261
نویسندگان
, , , ,