کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1859222 1530591 2013 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Integrable discretisations for a class of nonlinear Schrödinger equations on Grassmann algebras
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک و نجوم (عمومی)
پیش نمایش صفحه اول مقاله
Integrable discretisations for a class of nonlinear Schrödinger equations on Grassmann algebras
چکیده انگلیسی


• Elementary Darboux transforms for Grassmann-extended NLS equations are constructed.
• Grassmann generalisations of the Toda lattice and the NLS dressing chain are obtained.
• Grassmann generalisations of the difference Toda and NLS equations are obtained.
• For these systems initial value and initial-boundary problems are formulated.

Integrable discretisations for a class of coupled (super) nonlinear Schrödinger (NLS) type of equations are presented. The class corresponds to a Lax operator with entries in a Grassmann algebra. Elementary Darboux transformations are constructed. As a result, Grassmann generalisations of the Toda lattice and the NLS dressing chain are obtained. The compatibility (Bianchi commutativity) of these Darboux transformations leads to integrable Grassmann generalisations of the difference Toda and NLS equations. The resulting systems will have discrete Lax representations provided by the set of two consistent elementary Darboux transformations. For the two discrete systems obtained, initial value and initial-boundary problems are formulated.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physics Letters A - Volume 377, Issues 45–48, 17 December 2013, Pages 3254–3259
نویسندگان
, ,