کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1860781 1037456 2016 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Symmetrized quartic polynomial oscillators and their partial exact solvability
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک و نجوم (عمومی)
پیش نمایش صفحه اول مقاله
Symmetrized quartic polynomial oscillators and their partial exact solvability
چکیده انگلیسی


• Quasi-exact solution (QES) method generalized to cover non-analytic potentials.
• The necessary matching of wave function found facilitated in QES framework.
• Sample construction provided for symmetrized quartic oscillators.
• Phenomenological appeal of double-well shape of potential emphasized.

Sextic polynomial oscillator is probably the best known quantum system which is partially exactly alias   quasi-exactly solvable (QES), i.e., which possesses closed-form, elementary-function bound states ψ(x)ψ(x) at certain couplings and energies. In contrast, the apparently simpler and phenomenologically more important quartic polynomial oscillator is not   QES. A resolution of the paradox is proposed: The one-dimensional Schrödinger equation is shown QES after the analyticity-violating symmetrization V(x)=A|x|+Bx2+C|x|3+x4V(x)=A|x|+Bx2+C|x|3+x4 of the quartic polynomial potential.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physics Letters A - Volume 380, Issue 16, 1 April 2016, Pages 1414–1418
نویسندگان
,