کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1861087 | 1530571 | 2015 | 5 صفحه PDF | دانلود رایگان |

• Scaling formalism to characterize steady state.
• Homogeneous function used to obtain critical exponents.
Decay to asymptotic steady state in one-dimensional logistic-like mappings is characterized by considering a phenomenological description supported by numerical simulations and confirmed by a theoretical description. As the control parameter is varied bifurcations in the fixed points appear. We verified at the bifurcation point in both; the transcritical, pitchfork and period-doubling bifurcations, that the decay for the stationary point is characterized via a homogeneous function with three critical exponents depending on the nonlinearity of the mapping. Near the bifurcation the decay to the fixed point is exponential with a relaxation time given by a power law whose slope is independent of the nonlinearity. The formalism is general and can be extended to other dissipative mappings.
Journal: Physics Letters A - Volume 379, Issues 18–19, 26 June 2015, Pages 1246–1250