کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1861175 | 1530572 | 2015 | 8 صفحه PDF | دانلود رایگان |

• A three parameter unfolding of a triple-zero bifurcation is considered.
• A blow-up leads to a generalized Michelson system.
• In this system an exact homoclinic orbit is determined.
• Several codimension-two homoclinic bifurcation are numerically detected.
• The Rössler system exhibits these degeneracies that imply chaotic dynamics.
In this Letter we consider a three parameter unfolding of a linear degeneracy corresponding to a triple-zero eigenvalue of an equilibrium point. Using blow-up techniques we obtain a system where an exact homoclinic connection is determined. The numerical continuation of this global connection shows that it exhibits three different kinds of codimension-two degeneracies. Finally, these same codimension-two homoclinic bifurcations are detected in the Rössler system, ensuring in this way the existence of chaotic dynamics.
Journal: Physics Letters A - Volume 379, Issues 16–17, 19 June 2015, Pages 1114–1121