کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1861558 | 1037522 | 2008 | 5 صفحه PDF | دانلود رایگان |

First-principles study of the ground-state properties and the stability of Ca1−xZnxO solid solutions is presented using the full-potential linearized augmented plane wave (FP-LAPW) method. We employed the local density approximation (LDA) to the exchange-correlation potential. It is found that the structural parameters, i.e., lattice constants and bulk moduli deviate from the linear function of the composition x. We determined the equation of state of the alloys and showed an increasing compressibility function of composition. The formation energy is viewed as an energetic balance between pure structural constraints and quantum chemical effects. Thus, a phase separation over the whole range of concentration is expected. The origin of the miscibility gap has a chemical nature. Also, the thermodynamic stability of the alloys was investigated.
Journal: Physics Letters A - Volume 372, Issue 11, 10 March 2008, Pages 1910–1914