کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1862724 | 1037607 | 2008 | 4 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Universality of level spacing distributions in classical chaos
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
فیزیک و نجوم
فیزیک و نجوم (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We suggest that random matrix theory applied to a matrix of lengths of classical trajectories can be used in classical billiards to distinguish chaotic from non-chaotic behavior. We consider in 2D the integrable circular and rectangular billiard, the chaotic cardioid, Sinai and stadium billiard as well as mixed billiards from the Limaçon/Robnik family. From the spectrum of the length matrix we compute the level spacing distribution, the spectral auto-correlation and spectral rigidity. We observe non-generic (Dirac comb) behavior in the integrable case and Wignerian behavior in the chaotic case. For the Robnik billiard close to the circle the distribution approaches a Poissonian distribution. The length matrix elements of chaotic billiards display approximate GOE behavior. Our findings provide evidence for universality of level fluctuations-known from quantum chaos-to hold also in classical physics.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physics Letters A - Volume 372, Issue 25, 16 June 2008, Pages 4574-4577
Journal: Physics Letters A - Volume 372, Issue 25, 16 June 2008, Pages 4574-4577
نویسندگان
J.F. Laprise, O. Blondeau-Fournier, J. Kröger, H. Kröger, P.Y. St.-Louis, L.J. Dubé, E. Endress, A. Burra, R. Zomorrodi, G. Melkonyan, K.J.M. Moriarty,