کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1863432 | 1530559 | 2015 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
On integrability of a noncommutative q-difference two-dimensional Toda lattice equation
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
فیزیک و نجوم
فیزیک و نجوم (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In our previous work (C.X. Li and J.J.C. Nimmo, 2009 [18]), we presented a generalized type of Darboux transformations in terms of a twisted derivation in a unified form. The twisted derivation includes ordinary derivatives, forward difference operators, super derivatives and q-difference operators as its special cases. This result not only enables one to recover the known Darboux transformations and quasideterminant solutions to the noncommutative KP equation, the non-Abelian two-dimensional Toda lattice equation, the non-Abelian Hirota-Miwa equation and the super KdV equation, but also inspires us to investigate quasideterminant solutions to q-difference soliton equations. In this paper, we first construct the bilinear Bäcklund transformations for the known bilinear q-difference two-dimensional Toda lattice equation (q-2DTL) and then derive a Lax pair whose compatibility gives a formally different nonlinear q-2DTL equation and finally obtain its quasideterminant solutions by iterating its Darboux transformations.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physics Letters A - Volume 379, Issues 47â48, 18 December 2015, Pages 3075-3083
Journal: Physics Letters A - Volume 379, Issues 47â48, 18 December 2015, Pages 3075-3083
نویسندگان
C.X. Li, J.J.C. Nimmo, Shoufeng Shen,