کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1864159 | 1037709 | 2014 | 5 صفحه PDF | دانلود رایگان |

• Generalized RFI-Euler theorem is formulated.
• Legendre transform structure for the RFI is obtained.
• Inference model for energy eigenvalues is formulated.
Variational extremization of the relative Fisher information (RFI, hereafter) is performed. Reciprocity relations, akin to those of thermodynamics are derived, employing the extremal results of the RFI expressed in terms of probability amplitudes. A time independent Schrödinger-like equation (Schrödinger-like link) for the RFI is derived. The concomitant Legendre transform structure (LTS, hereafter) is developed by utilizing a generalized RFI-Euler theorem, which shows that the entire mathematical structure of thermodynamics translates into the RFI framework, both for equilibrium and non-equilibrium cases. The qualitatively distinct nature of the present results vis-á-vis those of prior studies utilizing the Shannon entropy and/or the Fisher information measure (FIM, hereafter) is discussed. A principled relationship between the RFI and the FIM frameworks is derived. The utility of this relationship is demonstrated by an example wherein the energy eigenvalues of the Schrödinger-like link for the RFI are inferred solely using the quantum mechanical virial theorem and the LTS of the RFI.
Journal: Physics Letters A - Volume 378, Issue 20, 4 April 2014, Pages 1341–1345