کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1864635 | 1037748 | 2008 | 11 صفحه PDF | دانلود رایگان |

Since the Laplacian matrices of weighted networks usually have complex eigenvalues, the problem of complex synchronized regions should be investigated carefully. The present Letter addresses this important problem by converting it to a matrix stability problem with respect to a complex parameter, which gives rise to several types of complex synchronized regions, including bounded, unbounded, disconnected, and empty regions. Because of the existence of disconnected synchronized regions, the convexity characteristic of stability for matrix pencils is further discussed. Then, some efficient methods for designing local feedback controllers and inner-linking matrices to enlarge the synchronized regions are developed and analyzed. Finally, a weighted network of smooth Chua's circuits is presented as an example for illustration.
Journal: Physics Letters A - Volume 372, Issue 21, 19 May 2008, Pages 3741–3751