کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1866866 1038081 2014 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Characterization of dynamical systems under noise using recurrence networks: Application to simulated and EEG data
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک و نجوم (عمومی)
پیش نمایش صفحه اول مقاله
Characterization of dynamical systems under noise using recurrence networks: Application to simulated and EEG data
چکیده انگلیسی


• We study the influence of noise on the recurrence network measures C and L.
• We propose the application of C and L to healthy and epileptic EEG data.
• The influence of noise can be minimized by increasing the recurrence rate.
• Measures C and L can describe the structural complexity of EEG data.
• In case of epileptic EEG, C performs better than L.

In this letter, we study the influence of observational noise on recurrence network (RN) measures, the global clustering coefficient (C) and average path length (L  ) using the Rössler system and propose the application of RN measures to analyze the structural properties of electroencephalographic (EEG) data. We find that for an appropriate recurrence rate (RR>0.02RR>0.02) the influence of noise on C can be minimized while L is independent of RR for increasing levels of noise. Indications of structural complexity were found for healthy EEG, but to a lesser extent than epileptic EEG. Furthermore, C performed better than L in case of epileptic EEG. Our results show that RN measures can provide insights into the structural properties of EEG in normal and pathological states.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physics Letters A - Volume 378, Issue 46, 24 October 2014, Pages 3464–3474
نویسندگان
, ,