کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1867919 1038360 2008 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Exponential decay and scaling laws in noisy chaotic scattering
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک و نجوم (عمومی)
پیش نمایش صفحه اول مقاله
Exponential decay and scaling laws in noisy chaotic scattering
چکیده انگلیسی
In this Letter we present a numerical study of the effect of noise on a chaotic scattering problem in open Hamiltonian systems. We use the second order Heun method for stochastic differential equations in order to integrate the equations of motion of a two-dimensional flow with additive white Gaussian noise. We use as a prototype model the paradigmatic Hénon-Heiles Hamiltonian with weak dissipation which is a well-known example of a system with escapes. We study the behavior of the scattering particles in the scattering region, finding an abrupt change of the decay law from algebraic to exponential due to the effects of noise. Moreover, we find a linear scaling law between the coefficient of the exponential law and the intensity of noise. These results are of a general nature in the sense that the same behavior appears when we choose as a model a two-dimensional discrete map with uniform noise (bounded in a particular interval and zero otherwise), showing the validity of the algorithm used. We believe the results of this work be useful for a better understanding of chaotic scattering in more realistic situations, where noise is presented.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physics Letters A - Volume 372, Issue 2, 7 January 2008, Pages 110-116
نویسندگان
, ,