کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1868007 1038380 2007 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Chaos beyond linearized stability analysis: Folding of the phase space and distribution of Lyapunov exponents
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک و نجوم (عمومی)
پیش نمایش صفحه اول مقاله
Chaos beyond linearized stability analysis: Folding of the phase space and distribution of Lyapunov exponents
چکیده انگلیسی

We consider a mechanism for area preserving Hamiltonian systems which leads to the enhanced probability, P(λ,t)P(λ,t), to find small values of the finite-time Lyapunov exponent, λ  . In our investigation of chaotic dynamical systems we go beyond the linearized stability analysis of nearby divergent trajectories and consider folding of the phase space in the course of chaotic evolution. We show that the spectrum of the Lyapunov exponents F(λ)=limt→∞t−1lnP(λ,t)F(λ)=limt→∞t−1lnP(λ,t) at the origin has a finite value F(0)=−λ˜ and a slope F′(0)⩽1F′(0)⩽1. This means that all negative moments of the distribution 〈e−mλt〉〈e−mλt〉 are saturated by rare events with λ→0λ→0. Extensive numerical simulations confirm our findings.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physics Letters A - Volume 365, Issue 4, 4 June 2007, Pages 290–294
نویسندگان
, ,