کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1868009 1038380 2007 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An integrable (2+12+1)-dimensional Toda equation with two discrete variables
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک و نجوم (عمومی)
پیش نمایش صفحه اول مقاله
An integrable (2+12+1)-dimensional Toda equation with two discrete variables
چکیده انگلیسی

An integrable (2+12+1)-dimensional Toda equation with two discrete variables is presented from the compatible condition of a Lax triad composed of the ZS–AKNS (Zakharov, Shabat; Ablowitz, Kaup, Newell, Segur) eigenvalue problem and two discrete spectral problems. Through the nonlinearization technique, the Lax triad is transformed into a Hamiltonian system and two symplectic maps, respectively, which are integrable in the Liouville sense, sharing the same set of integrals, functionally independent and involutive with each other. In the Jacobi variety of the associated algebraic curve, both the continuous and the discrete flows are straightened out by the Abel–Jacobi coordinates, and are integrated by quadratures. An explicit algebraic–geometric solution in the original variable is obtained by the Riemann–Jacobi inversion.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physics Letters A - Volume 365, Issue 4, 4 June 2007, Pages 301–308
نویسندگان
, ,