کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1868059 | 1530647 | 2007 | 5 صفحه PDF | دانلود رایگان |

In this Letter, by extending the concept of Kuramoto oscillator to the left-invariant flow on general Lie group, we investigate the generalized phase synchronization on networks. The analyses and simulations of some typical dynamical systems on Watts–Strogatz networks are given, including the n-dimensional torus, the identity component of 3-dimensional general linear group, the special unitary group, and the special orthogonal group. In all cases, the greater disorder of networks will predict better synchronizability, and the small-world effect ensures the global synchronization for sufficiently large coupling strength. The collective synchronized behaviors of many dynamical systems, such as the integrable systems, the two-state quantum systems and the top systems, can be described by the present phase synchronization frame. In addition, it is intuitive that the low-dimensional systems are more easily to synchronize, however, to our surprise, we found that the high-dimensional systems display obviously synchronized behaviors in regular networks, while these phenomena cannot be observed in low-dimensional systems.
Journal: Physics Letters A - Volume 362, Issues 2–3, 26 February 2007, Pages 115–119