کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1869730 | 1531003 | 2011 | 7 صفحه PDF | دانلود رایگان |

Recent deep space missions utilize the thermal output of the radioisotope plutonium-238 as the fuel in the thermal to electrical power system. Since the application of plutonium in its elemental state has several disadvantages, the fuel employed in these deep space power systems is typically in the oxide form such as plutonium-238 dioxide (238PuO2). As an oxide, the processing of the plutonium dioxide into fuel pellets is performed via “classical” ceramic processing unit operations such as sieving of the powder, pressing, sintering, etc. Modeling of these unit operations can be beneficial in the understanding and control of processing parameters with the goal of further enhancing the desired characteristics of the 238PuO2 fuel pellets. A finite element model has been used to help identify the time-temperature-stress profile within a pellet during a furnace operation taking into account that 238PuO2 itself has a significant thermal output. Results of the modeling efforts will be discussed.
Journal: Physics Procedia - Volume 20, 2011, Pages 397-403