کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1870484 1039510 2012 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Improved PCA + LDA Applies to Gastric Cancer Image Classification Process
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک و نجوم (عمومی)
پیش نمایش صفحه اول مقاله
Improved PCA + LDA Applies to Gastric Cancer Image Classification Process
چکیده انگلیسی

Principal component analysis (PCA) and linear discriminant analysis (LDA) are two most widely used pattern recognition methods in the field of feature extraction,while PCA + LDA is often used in image recognition.Here,we apply PCA + LDA to gastric cancer image feature classification, but the traditional PCA + LDA dimension reduction method has good effect on the training sample dimensionality and clustering, the effect on test samples dimension reduction and clustering is very poor, that is, the traditional PCA + LDA exists Generalization problem on the test samples. To solve this problem, this paper proposes an improved PCA + LDA method, which mainly considers from the LDA transform; improves the traditional PCA + LDA;increase the generalization performance of LDA on test samples and increases the classification accuracy on test samples. The experiment proves that the method can achieve good clustering.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physics Procedia - Volume 24, Part C, 2012, Pages 1689-1695