کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1870489 | 1039510 | 2012 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
An Algorithm for Mining Frequent Closed Itemsets in Data Stream
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
فیزیک و نجوم
فیزیک و نجوم (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Mining frequent itemsets from data streams by the model of sliding window has been extensively studied. This paper presents an algorithm AFPCFI-DS for mining the frequent itemsets from data streams. The algorithm detects the frequent items using a FP-tree in each sliding window. In processing each new window the algorithm first changes the head table and then modifies the FP-tree according to the changed items in the head table. The algorithm also adopts local updating strategy to avoid the time-consuming operations of searching in the whole tree to add or delete transactions. Our experimental results show that the algorithm is more efficient and has lower time and memory complexity than the algorithms Moment and FPCFI-DS.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physics Procedia - Volume 24, Part C, 2012, Pages 1722-1728
Journal: Physics Procedia - Volume 24, Part C, 2012, Pages 1722-1728