کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1870564 1039510 2012 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Discriminant Subspace Learning for Microcalcification Clusters Detection
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک و نجوم (عمومی)
پیش نمایش صفحه اول مقاله
Discriminant Subspace Learning for Microcalcification Clusters Detection
چکیده انگلیسی

This paper presents a novel approach to microcalcification clusters (MCs) detection in mammograms based on the discriminant subspace learning. The ground truth of MCs in mammograms is assumed to be known as a priori. Several typical subspace learning algorithms, such as principal component analysis (PCA), linear discriminant analysis (LDA), tensor subspace analysis (TSA) and general tensor discriminant Analysis (GTDA), are employed to extract subspace features. In subspace feature domain, the MCs detection procedure is formulated as a supervised learning and classification problem, and SVM is used as a classifier to make decision for the presence of MCs or not. A large number of experiments are carried out to evaluate and compare the performance of the proposed MCs detection algorithms. The experiment result suggests that correlation filters is a promising technique for MCs detection.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physics Procedia - Volume 24, Part C, 2012, Pages 2237-2244